Водородный показатель pH

Водоро́дный показа́тель, pH (произносится «пэ аш», английское произношение англ. pH — piː’eɪtʃ, «пи эйч») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на один литр:
mbox{pH} = -lg left[ mbox{H}^  right]!
История
Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni — сила водорода, или pondus hydrogeni — вес водорода. Вообще в химии сочетанием pX принято обозначать величину, равную −lg X, а буква H в данном случае обозначает концентрацию ионов водорода (H ), или, точнее, термодинамическую активность гидроксоний-ионов.
Уравнения, связывающие pH и pOH
Вывод значения pH
В чистой воде при 25 °C концентрации ионов водорода ([H ]) и гидроксид-ионов ([OH]) одинаковы и составляют 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H ] · [OH] и составляет 10−14 моль²/л² (при 25 °C).
Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H ] > [OH] говорят, что раствор является кислым, а при [OH] > [H ] — щелочным.
Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем — pH.
mbox{pH} = -lg left[ mbox{H}^  right]!
pOH
Несколько меньшее распространение получила обратная pH величина — показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH:
text{pOH} = -lg left[ text{OH}^- right]!
как в любом водном растворе при 25 °C [text{H}^ ] [text{OH}^-] = 1{,}0 cdot 10^{-14}, очевидно, что при этой температуре:
text{pOH} = 14 - text{pH}!
Значения pH в растворах различной кислотности
  • Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода [H ] = 10−15 моль /л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1.
Некоторые значения pH
Вещество
pH
Электролит в свинцовых аккумуляторах
<1.0
Желудочный сок
1,0—2,0
Лимонный сок (5% р-р лимонной кислоты)
2,0±0,3
Пищевой уксус
2,4
Кока-кола
3,0±0,3
Яблочный сок
3,0
Пиво
4,5
Кофе
5,0
Шампунь
5,5
Чай
5,5
Кожа здорового человека
5,5
Кислотный дождь
< 5,6
Слюна
6,8–7,4 [1]
Молоко
6,6-6,9
Чистая вода
7,0
Кровь
7,36—7,44
Морская вода
8,0
Мыло (жировое) для рук
9,0—10,0
Нашатырный спирт
11,5
Отбеливатель (хлорная известь)
12,5
Концентрированные растворы щелочей
>13
Так как при 25 °C (стандартных условиях) [H ] · [OH] = 10−14, то понятно, что при этой температуре pH pOH = 14.
Так как в кислых растворах [H ] > 10−7, то у кислых растворов pH < 7, аналогично, у щелочных растворов pH > 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH < 7 (что соответствует одновременно возросшим концентрациям как H , так и OH); при понижении температуры, напротив, нейтральная pH возрастает.
Методы определения значения pH
Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.
  1. Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1–2 единицы.
  2. Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.
  3. Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, включающей специальный стеклянный электрод, потенциал которого зависит от концентрации ионов H в окружающем растворе. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.
  4. Аналитический объёмный метод — кислотно-основное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакции. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.
  5. Влияние температуры на значения pH
0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3
0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83
Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H ) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.
Роль pH в химии и биологии
Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.
Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред.
Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем организма.
Источник: Википедия